Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2'-Methylpyrazolo[4',3':16,17]androst-5en-3*B*-ol

Hu-ling Zheng, Peng Xia and Ying Chen*

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road Shanghai 200032, People's Republic of China Correspondence e-mail: yingchen71@fudan.edu.cn

Received 15 May 2009; accepted 22 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.065; wR factor = 0.178; data-to-parameter ratio = 11.8.

In the title compound, $C_{21}H_{30}N_2O$, there are five fused rings. The A and C rings adopt chair conformations, ring B adopts an $8\beta.9\alpha$ -half-chair conformation and ring D adopts a 14α envelope conformation. The pyrazole ring is planar. Intermolecular O-H···N hydrogen bonds [H···N = 1.88 (5) Å] help to stabilize the crystal structure. The absolute structure was deduced from those of the starting materials.

Related literature

For general background, see: Kashiwada et al. (1996); Spek (2009).

Experimental

Crystal data C21H30N2O

 $M_r = 326.47$

Orthorhombic, P21212 a = 11.779 (4) Å b = 27.996 (10) Åc = 6.361 (2) Å V = 2097.6 (12) Å³

Data collection

Bruker SMART CCD area-detector	10038 measured reflections
diffractometer	2633 independent reflections
Absorption correction: multi-scan	1670 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.089$
$T_{\rm min} = 0.988, \ T_{\rm max} = 0.995$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	H atoms treated by a mixture of
$wR(F^2) = 0.178$	independent and constrained
S = 0.99	refinement
2633 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
224 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.20 \times 0.10 \times 0.08 \; \mathrm{mm}$

 $\mu = 0.06 \text{ mm}^{-1}$

T = 293 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N2^i$	0.96 (5)	1.88 (6)	2.813 (5)	163 (5)
Symmetry code: (i)	$-x + \frac{3}{2}, y + \frac{1}{2}, -z$			

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge Miss Wang Jingmei, Center of Analysis and Measurement, Fudan University, for her help with the crystal structure analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2148).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Kashiwada, Y., Hashimoto, F. & Cosentino, L. M. (1996). J. Med. Chem. 39, 1016-1017.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, 01436 [doi:10.1107/S1600536809019539]

2'-Methylpyrazolo[4',3':16,17]androst-5-en-3β-ol

H. Zheng, P. Xia and Y. Chen

Comment

The 3-O-(2',2'-dimethylsuccinyl)-betulinic acid, a derivative of natural product betulinic acid, was identified as a potent anti-*HIV* (human immunodificiency virus) agent with remarkable active value (Kashiwada *et al.*, 1996). Based on the structure and bioactivity of 3-O-(2',2'-dimethylsuccinyl)-betulinic acid, we tried to synthesize some of its steroidal analogs with a heterocycle fused *E* ring. During synthesizing a target compound 3 β -O-(2",2"-dimethylsuccinyl)-4,4-dimethyl-androst-[17,16-c]-(2'-methyl)pyrazole, an important intermediate, 3 β -hydroxy-androst-5-en-[17,16-c]-(2'-methyl)pyrazole, was obtained and its molecular structure was reported here.

Fig.1 shows the molecular structure of the title compound. This compound is a five-ring-fused compound. Ring *A* and ring *C* adopt chair conformations in each molecule. The C5–C6 distance of 1.340 (5) Å conform the localization of a double bond at this position. As a result of this double bond, the geometry around C5 is planar and hence ring *B* adopt 8 β ,9 α -half-chair conformation. The ring *D* assumes 14 α -envelope conformation. The pyrazole *E* ring is essentially planar. Intermolecular O1–H1···N2ⁱ hydrogen bond with parameters O1–H1 = 0.96 (5)Å, H1···N2ⁱ = 1.88 (6)Å, O1···N2ⁱ = 2.813 (5)Å and angle O1–H1···N2ⁱ = 163 (5)° (symmetry code: (i) -*x*+3/2, *y*+1/2, -*z*) help to stablize the crystal structure.

Experimental

 3β -Hydroxy-16-hydroxymethylene-androst-5-en-17-one (500 mg, 1.58 mmol) was dissolved in 10 ml EtOH, and methylhydrazine (120 mg, 2.61 mmol) was added. The resulting mixture was stirred for 2 h at room temperature, and 100 ml H₂O was added. After filtered, washed with water and dried, crude product of title compound (520 mg) was got. The crude product was purified by chromatography with petroleum ether/ EtOAc (10:3) as eluent and recrystallized from tetrahydrofuran to obtain its single-crystal for X-ray diffraction analysis.

Refinement

All H atoms except H1 were positioned geometrically and refined using a riding model with C-H = 0.93Å for aromatic H atoms and C-H = 0.96Å for methyl H atoms, and refine in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms. H1 had been found on the different Fourier map and refined without bond restrain. In the absence of significant anomalous scattering, 845 Friedel pairs were merged and all $\Delta f''$ values to be set to zero.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are presented as a small spheres of arbitrary radius.

2'-Methylpyrazolo[4',3':16,17]androst-5-en-3β-ol

Crystal data

C ₂₁ H ₃₀ N ₂ O	$F_{000} = 712$
$M_r = 326.47$	$D_{\rm x} = 1.034 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: P 2 2ab	Cell parameters from 985 reflections
a = 11.779 (4) Å	$\theta = 2.3 - 21.3^{\circ}$
b = 27.996 (10) Å	$\mu = 0.06 \text{ mm}^{-1}$
c = 6.361 (2) Å	T = 293 K
$V = 2097.6 (12) \text{ Å}^3$	Column, colourless
Z = 4	$0.20\times0.10\times0.08~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2633 independent reflections
Radiation source: fine-focus sealed tube	1670 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.089$
T = 293 K	$\theta_{\text{max}} = 27.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 15$
$T_{\min} = 0.988, T_{\max} = 0.995$	$k = -35 \rightarrow 27$
10038 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.065$	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.178$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.99	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
2633 reflections	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
224 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983)
Secondary atom site location: difference Fourier map	Flack parameter: 0 (10)

Special details

Experimental. Compound contains disordered unassigned solvent (tetrahydrofuran), which was SQEEZED with program *PLATON* (Spek, 2003). Solvent is not contained in chemical formula and quantities derived thereof. Informations on the SQUEEZE procedure are given subsequently.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.8092 (3)	0.49975 (10)	0.3404 (5)	0.0957 (11)
H1	0.809 (4)	0.5288 (17)	0.261 (10)	0.114 (16)*
N1	0.7846 (3)	0.11087 (10)	-0.1171 (5)	0.0720 (9)
N2	0.7158 (4)	0.07461 (12)	-0.0492 (6)	0.0859 (11)
C1	0.8428 (4)	0.38834 (12)	0.0088 (6)	0.0682 (10)
H1A	0.8983	0.3797	-0.0973	0.082*
H1B	0.7686	0.3884	-0.0573	0.082*
C2	0.8696 (4)	0.43932 (13)	0.0914 (7)	0.0774 (12)
H2A	0.9455	0.4400	0.1503	0.093*
H2B	0.8667	0.4619	-0.0241	0.093*
C3	0.7851 (4)	0.45347 (13)	0.2566 (7)	0.0740 (11)
Н3	0.7090	0.4537	0.1945	0.089*
C4	0.7871 (4)	0.41834 (13)	0.4390 (7)	0.0746 (11)
H4A	0.8602	0.4200	0.5089	0.090*
H4B	0.7290	0.4271	0.5401	0.090*
C5	0.7665 (3)	0.36782 (12)	0.3634 (6)	0.0583 (9)
C6	0.6856 (3)	0.34023 (13)	0.4488 (6)	0.0674 (10)
H6	0.6389	0.3540	0.5500	0.081*
C7	0.6648 (3)	0.28952 (13)	0.3943 (6)	0.0613 (9)
H7A	0.5958	0.2873	0.3118	0.074*
H7B	0.6536	0.2714	0.5225	0.074*
C8	0.7623 (3)	0.26762 (10)	0.2707 (5)	0.0482 (8)
H8	0.8270	0.2627	0.3650	0.058*
C9	0.7973 (3)	0.30251 (11)	0.0934 (5)	0.0496 (8)
Н9	0.7269	0.3110	0.0204	0.060*
C10	0.8443 (3)	0.35012 (11)	0.1862 (5)	0.0513 (8)
C11	0.8757 (3)	0.28075 (12)	-0.0755 (6)	0.0610 (9)
H11A	0.8766	0.3019	-0.1963	0.073*
H11B	0.9523	0.2795	-0.0199	0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.8425 (3)	0.23078 (12)	-0.1496 (5)	0.0578 (9)
H12A	0.9017	0.2181	-0.2396	0.069*
H12B	0.7730	0.2325	-0.2309	0.069*
C13	0.8252 (3)	0.19741 (12)	0.0396 (5)	0.0508 (8)
C14	0.7296 (3)	0.22009 (12)	0.1721 (5)	0.0497 (8)
H14	0.6698	0.2279	0.0707	0.060*
C15	0.6785 (3)	0.17936 (12)	0.3103 (6)	0.0609 (10)
H15A	0.7204	0.1751	0.4403	0.073*
H15B	0.5989	0.1848	0.3415	0.073*
C16	0.6951 (3)	0.13810 (12)	0.1623 (6)	0.0619 (9)
C17	0.7721 (3)	0.14936 (12)	0.0079 (6)	0.0598 (9)
C18	0.9367 (3)	0.19017 (13)	0.1615 (7)	0.0654 (10)
H18A	0.9213	0.1735	0.2904	0.098*
H18B	0.9698	0.2207	0.1925	0.098*
H18C	0.9885	0.1718	0.0777	0.098*
C19	0.9641 (3)	0.34398 (13)	0.2742 (7)	0.0667 (10)
H19A	0.9652	0.3175	0.3703	0.100*
H19B	0.9862	0.3726	0.3466	0.100*
H19C	1.0160	0.3379	0.1609	0.100*
C20	0.6632 (4)	0.09124 (14)	0.1184 (8)	0.0744 (11)
H20	0.6113	0.0738	0.1975	0.089*
C21	0.8604 (5)	0.10396 (15)	-0.2928 (8)	0.0969 (16)
H21A	0.9134	0.1300	-0.2991	0.145*
H21B	0.8173	0.1028	-0.4207	0.145*
H21C	0.9010	0.0745	-0.2753	0.145*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.149 (3)	0.0445 (15)	0.094 (2)	0.0112 (17)	-0.004 (2)	0.0059 (15)
N1	0.106 (2)	0.0424 (17)	0.067 (2)	0.0002 (17)	0.002 (2)	0.0005 (14)
N2	0.128 (3)	0.0485 (19)	0.081 (3)	-0.006 (2)	-0.010 (2)	0.0001 (17)
C1	0.094 (3)	0.053 (2)	0.058 (2)	-0.0022 (19)	0.001 (2)	0.0149 (17)
C2	0.117 (3)	0.051 (2)	0.065 (3)	0.000 (2)	0.002 (2)	0.0167 (18)
C3	0.103 (3)	0.049 (2)	0.070 (3)	0.014 (2)	0.002 (2)	0.0118 (18)
C4	0.107 (3)	0.051 (2)	0.066 (3)	0.007 (2)	0.007 (2)	0.0039 (18)
C5	0.077 (2)	0.052 (2)	0.0456 (19)	0.0034 (18)	0.0003 (18)	0.0079 (15)
C6	0.079 (2)	0.063 (2)	0.061 (2)	0.0153 (19)	0.0104 (19)	0.0022 (18)
C7	0.0549 (18)	0.062 (2)	0.067 (2)	-0.0033 (16)	0.0072 (17)	0.0038 (17)
C8	0.0528 (17)	0.0477 (18)	0.0443 (18)	0.0005 (13)	0.0003 (15)	0.0059 (13)
C9	0.0541 (17)	0.0499 (18)	0.0448 (19)	-0.0011 (14)	-0.0031 (14)	0.0082 (14)
C10	0.0623 (19)	0.0460 (18)	0.046 (2)	-0.0007 (15)	0.0033 (15)	0.0095 (14)
C11	0.075 (2)	0.059 (2)	0.049 (2)	-0.0049 (18)	0.0132 (17)	0.0069 (16)
C12	0.068 (2)	0.062 (2)	0.043 (2)	0.0023 (16)	0.0073 (17)	0.0037 (15)
C13	0.0562 (17)	0.0490 (19)	0.0472 (19)	0.0049 (15)	0.0012 (14)	0.0024 (14)
C14	0.0499 (17)	0.0526 (18)	0.0466 (19)	-0.0060 (15)	-0.0022 (14)	0.0063 (14)
C15	0.066 (2)	0.056 (2)	0.060 (2)	-0.0136 (16)	0.0087 (17)	0.0066 (17)
C16	0.068 (2)	0.047 (2)	0.071 (3)	-0.0079 (16)	-0.0052 (19)	0.0035 (17)

C17	0.070 (2)	0.052 (2)	0.057 (2)	-0.0006 (17)	-0.0049 (19)	0.0013 (16)
C18	0.0574 (19)	0.066 (2)	0.073 (3)	0.0055 (17)	-0.0036 (18)	0.008 (2)
C19	0.063 (2)	0.065 (2)	0.072 (3)	-0.0086 (18)	-0.0060 (19)	0.0068 (19)
C20	0.086 (3)	0.058 (2)	0.079 (3)	-0.013 (2)	-0.008 (2)	0.013 (2)
C21	0.159 (4)	0.061 (3)	0.071 (3)	0.004 (3)	0.025 (3)	-0.004 (2)
Geometric paran	neters (Å, °)					
O1—C3		1.429 (5)	С9—	·C10	1.559	(5)
O1—H1		0.96 (5)	С9—	·H9	0.9800)
N1—C17		1.347 (5)	C10-	C19	1.527	(5)
N1—N2		1.369 (5)	C11-	C12	1.527	(5)
N1-C21		1.443 (6)	C11-	-H11A	0.9700)
N2—C20		1.317 (6)	C11–	-H11B	0.9700)
C1—C2		1.553 (5)	C12-	C13	1.537	(5)
C1-C10		1.555 (4)	C12-	-H12A	0.9700)
C1—H1A		0.9700	C12-	-H12B	0.9700)
C1—H1B		0.9700	C13-	C17	1.497	(5)
C2—C3		1.501 (6)	C13-	C18	1.538	(5)
C2—H2A		0.9700	C13-	C14	1.543	(4)
C2—H2B		0.9700	C14-	C15	1.560	(4)
C3—C4		1.521 (6)	C14-	-H14	0.9800)
С3—Н3		0.9800	00 C15—C16 1.503 (5)		(5)	
C4—C5		1.513 (5)	C15-	-H15A	0.9700)
C4—H4A		0.9700	C15-	-H15B	0.9700)
C4—H4B		0.9700	C16–	C17	1.374	(5)
C5—C6		1.341 (5)	C16-	C20	1.393	(5)
C5—C10		1.535 (5)	C18–	-H18A	0.9600)
С6—С7		1.482 (5)	C18–	-H18B	0.9600)
С6—Н6		0.9300	C18–	C18—H18C 0.9600)
С7—С8		1.520 (5)	C19–	С19—Н19А 0.9600)
C7—H7A		0.9700	C19–	-H19B	0.9600)
С7—Н7В		0.9700	C19–	-H19C	0.9600)
C8—C14		1.521 (4)	C20–	-H20	0.9300)
С8—С9		1.548 (4)	C21-	-H21A	0.9600)
C8—H8		0.9800	C21-	-H21B	0.9600)
C9—C11		1.542 (5)	C21-	-H21C	0.9600)
C3—O1—H1		125 (3)	C1—	·C10—C9	108.0	(3)
C17—N1—N2		110.0 (3)	C12-	C11C9	115.1	(3)
C17—N1—C21		129.2 (3)	C12-		108.5	
N2—N1—C21		120.7 (3)	С9—	C11—H11A	108.5	
C20—N2—N1		105.8 (3)	C12-	C11H11B	108.5	
C2-C1-C10		112.6 (3)	С9—	C11—H11B	108.5	
C2—C1—H1A		109.1	H11A	А—С11—Н11В	107.5	
C10-C1-H1A		109.1	C11–	C12C13	110.4	(3)
C2—C1—H1B		109.1	C11-	C12H12A	109.6	
C10-C1-H1B		109.1	C13-	C12H12A	109.6	
H1A—C1—H1B		107.8	C11-	C12H12B	109.6	
C3—C2—C1		110.2 (3)	C13–	—С12—Н12В	109.6	

С3—С2—Н2А	109.6	H12A—C12—H12B	108.1
C1—C2—H2A	109.6	C17—C13—C12	119.7 (3)
C3—C2—H2B	109.6	C17—C13—C18	107.8 (3)
C1—C2—H2B	109.6	C12-C13-C18	111.2 (3)
H2A—C2—H2B	108.1	C17—C13—C14	97.9 (3)
O1—C3—C2	111.6 (3)	C12-C13-C14	105.9 (3)
O1—C3—C4	107.4 (4)	C18-C13-C14	113.7 (3)
C2—C3—C4	110.7 (3)	C8—C14—C13	113.6 (2)
O1—C3—H3	109.0	C8—C14—C15	120.3 (3)
С2—С3—Н3	109.0	C13—C14—C15	106.8 (3)
С4—С3—Н3	109.0	C8—C14—H14	104.9
C5—C4—C3	111.1 (3)	C13-C14-H14	104.9
C5—C4—H4A	109.4	C15-C14-H14	104.9
C3—C4—H4A	109.4	C16—C15—C14	99.1 (3)
C5—C4—H4B	109.4	С16—С15—Н15А	111.9
C3—C4—H4B	109.4	C14—C15—H15A	111.9
H4A—C4—H4B	108.0	С16—С15—Н15В	111.9
C6—C5—C4	121.6 (3)	C14—C15—H15B	111.9
C6—C5—C10	122.4 (3)	H15A—C15—H15B	109.6
C4—C5—C10	116.0 (3)	C17—C16—C20	104.5 (4)
C5—C6—C7	125.1 (3)	C17—C16—C15	110.9 (3)
С5—С6—Н6	117.5	C20-C16-C15	144.6 (4)
С7—С6—Н6	117.5	N1—C17—C16	108.1 (3)
C6—C7—C8	112.5 (3)	N1-C17-C13	138.8 (4)
С6—С7—Н7А	109.1	C16—C17—C13	112.7 (3)
С8—С7—Н7А	109.1	C13-C18-H18A	109.5
С6—С7—Н7В	109.1	C13-C18-H18B	109.5
С8—С7—Н7В	109.1	H18A—C18—H18B	109.5
H7A—C7—H7B	107.8	C13-C18-H18C	109.5
C7—C8—C14	112.0 (3)	H18A—C18—H18C	109.5
C7—C8—C9	108.9 (3)	H18B—C18—H18C	109.5
C14—C8—C9	108.6 (3)	C10-C19-H19A	109.5
С7—С8—Н8	109.1	С10—С19—Н19В	109.5
С14—С8—Н8	109.1	H19A—C19—H19B	109.5
С9—С8—Н8	109.1	С10—С19—Н19С	109.5
C11—C9—C8	114.7 (3)	H19A—C19—H19C	109.5
C11—C9—C10	112.9 (3)	H19B—C19—H19C	109.5
C8—C9—C10	111.0 (3)	N2-C20-C16	111.6 (4)
С11—С9—Н9	105.8	N2—C20—H20	124.2
С8—С9—Н9	105.8	С16—С20—Н20	124.2
С10—С9—Н9	105.8	N1—C21—H21A	109.5
C19—C10—C5	108.6 (3)	N1—C21—H21B	109.5
C19—C10—C1	110.7 (3)	H21A—C21—H21B	109.5
C5—C10—C1	107.7 (3)	N1—C21—H21C	109.5
С19—С10—С9	111.7 (3)	H21A—C21—H21C	109.5
C5—C10—C9	110.0 (3)	H21B—C21—H21C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O1—H1···N2 ⁱ	0.96 (5)	1.88 (6)	2.813 (5)	163 (5)
Symmetry codes: (i) $-x+3/2$, $y+1/2$, $-z$.				

Fig. 1

